3.3.4 \(\int \frac {(d^2-e^2 x^2)^{5/2}}{x (d+e x)^4} \, dx\) [204]

Optimal. Leaf size=89 \[ \frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+4 d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

4*d*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-d*arctanh((-e^2*x^2+d^2)^(1/2)/d)+8*d*(-e*x+d)/(-e^2*x^2+d^2)^(1/2)+(-e^2
*x^2+d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {866, 1819, 1823, 858, 223, 209, 272, 65, 214} \begin {gather*} 4 d \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )+\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}-d \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^4),x]

[Out]

(8*d*(d - e*x))/Sqrt[d^2 - e^2*x^2] + Sqrt[d^2 - e^2*x^2] + 4*d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - d*ArcTanh[
Sqrt[d^2 - e^2*x^2]/d]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1819

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 1823

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rubi steps

\begin {align*} \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^4} \, dx &=\int \frac {(d-e x)^4}{x \left (d^2-e^2 x^2\right )^{3/2}} \, dx\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}-\frac {\int \frac {-d^4-4 d^3 e x+d^2 e^2 x^2}{x \sqrt {d^2-e^2 x^2}} \, dx}{d^2}\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+\frac {\int \frac {d^4 e^2+4 d^3 e^3 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{d^2 e^2}\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+d^2 \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx+(4 d e) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+\frac {1}{2} d^2 \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )+(4 d e) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+4 d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {d^2 \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{e^2}\\ &=\frac {8 d (d-e x)}{\sqrt {d^2-e^2 x^2}}+\sqrt {d^2-e^2 x^2}+4 d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.40, size = 115, normalized size = 1.29 \begin {gather*} \frac {(9 d+e x) \sqrt {d^2-e^2 x^2}}{d+e x}+2 d \tanh ^{-1}\left (\frac {\sqrt {-e^2} x}{d}-\frac {\sqrt {d^2-e^2 x^2}}{d}\right )-\frac {4 d e \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{\sqrt {-e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^4),x]

[Out]

((9*d + e*x)*Sqrt[d^2 - e^2*x^2])/(d + e*x) + 2*d*ArcTanh[(Sqrt[-e^2]*x)/d - Sqrt[d^2 - e^2*x^2]/d] - (4*d*e*L
og[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/Sqrt[-e^2]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1191\) vs. \(2(81)=162\).
time = 0.08, size = 1192, normalized size = 13.39

method result size
default \(\text {Expression too large to display}\) \(1192\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^4,x,method=_RETURNVERBOSE)

[Out]

-1/d^4*(1/5*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x
+d/e))^(3/2)+3/4*d^2*(-1/4*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2)
*arctan((e^2)^(1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)))))-1/e^2/d^2*(1/d/e/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*
e*(x+d/e))^(7/2)+4*e/d*(1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(7/2)+5/3*e/d*(1/5*(-(x+d/e)^2*e^2+2*
d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(3/2)+3/4*d^2*(-1/4*(-2
*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(x+d/e
)^2*e^2+2*d*e*(x+d/e))^(1/2)))))))-1/e^3/d*(-1/d/e/(x+d/e)^4*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(7/2)-3*e/d*(1/d/e
/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(7/2)+4*e/d*(1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(7/2)+
5/3*e/d*(1/5*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(
x+d/e))^(3/2)+3/4*d^2*(-1/4*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2
)*arctan((e^2)^(1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2))))))))-1/e/d^3*(1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+
2*d*e*(x+d/e))^(7/2)+5/3*e/d*(1/5*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-
(x+d/e)^2*e^2+2*d*e*(x+d/e))^(3/2)+3/4*d^2*(-1/4*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/
2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2))))))+1/d^4*(1/5*(-e^2*x^2+d^2
)^(5/2)+d^2*(1/3*(-e^2*x^2+d^2)^(3/2)+d^2*((-e^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*
x^2+d^2)^(1/2))/x))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate((-x^2*e^2 + d^2)^(5/2)/((x*e + d)^4*x), x)

________________________________________________________________________________________

Fricas [A]
time = 2.13, size = 112, normalized size = 1.26 \begin {gather*} \frac {9 \, d x e + 9 \, d^{2} - 8 \, {\left (d x e + d^{2}\right )} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) + {\left (d x e + d^{2}\right )} \log \left (-\frac {d - \sqrt {-x^{2} e^{2} + d^{2}}}{x}\right ) + \sqrt {-x^{2} e^{2} + d^{2}} {\left (x e + 9 \, d\right )}}{x e + d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^4,x, algorithm="fricas")

[Out]

(9*d*x*e + 9*d^2 - 8*(d*x*e + d^2)*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x) + (d*x*e + d^2)*log(-(d - sqrt
(-x^2*e^2 + d^2))/x) + sqrt(-x^2*e^2 + d^2)*(x*e + 9*d))/(x*e + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {5}{2}}}{x \left (d + e x\right )^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**(5/2)/x/(e*x+d)**4,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**(5/2)/(x*(d + e*x)**4), x)

________________________________________________________________________________________

Giac [A]
time = 1.78, size = 97, normalized size = 1.09 \begin {gather*} 4 \, d \arcsin \left (\frac {x e}{d}\right ) \mathrm {sgn}\left (d\right ) - d \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right ) + \sqrt {-x^{2} e^{2} + d^{2}} - \frac {16 \, d}{\frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} e^{\left (-2\right )}}{x} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^4,x, algorithm="giac")

[Out]

4*d*arcsin(x*e/d)*sgn(d) - d*log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x)) + sqrt(-x^2*e^2 + d
^2) - 16*d/((d*e + sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/x + 1)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}}{x\,{\left (d+e\,x\right )}^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^4),x)

[Out]

int((d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^4), x)

________________________________________________________________________________________